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Large-eddy simulations of the Richtmyer–Meshkov instability with reshock are pre-
sented and the results are compared with experiments. Several configurations of
shocks initially travelling from light (air) to heavy (sulfur hexafluoride, SF6) have been
simulated to match previous experiments and good agreement is found in the growth
rates of the turbulent mixing zone (TMZ). The stretched-vortex subgrid model used in
this study allows for subgrid continuation modelling, where statistics of the unresolved
scales of the flow are estimated. In particular, this multiscale modelling allows the
anisotropy of the flow to be extended to the dissipation scale, η, and estimates to be
formed for the subgrid probability density function of the mixture fraction of air/SF6

based on the subgrid variance, including the effect of Schmidt number.

1. Introduction
During the process of refraction as a shock interacts with an interface separating

two gases, vorticity is, in general, deposited at the interface by means of baroclinic
torque. The physical mechanism of this vorticity production is the miss-alignment of
the pressure gradient across the shock and the local density gradient at the contact
during shock passage. The rotational flow associated with this localized vorticity
causes the interface to distort strongly in areas of maximal misalignment, forming
characteristic structures such as bubbles and spikes. The growth in the interface
amplitude resulting from the shock–interface interaction is generally referred to as
the Richtmyer–Meshkov instability (RMI) (Richtmyer 1960; Meshkov 1969) and is
sometimes considered to be the impulsive limit of a Rayleigh–Taylor instability. The
analysis of Richtmyer (1960) showed that initially small perturbation amplitudes
grow linearly with time, and other work such as Mikaelian (1989) suggests that even
when the perturbation is nonlinearly saturated, the growth continues to be linear in
time. The structures generated by the Richtmyer–Meshkov instability are themselves
subject to vortex pairing and additional instabilities such as the Kelvin–Helmholtz
instability, leading to a wide range of physical scales in the area of the interface.

The Richtmyer–Meshkov instability plays a fundamental role in the context of
many physical settings, both natural and man-made. Evidence of the RMI has been
seen by the Hubble Space Telescope in remnants of the explosion of supernova
1987A (Sonneborn et al. 1999; Maran et al. 2000). In related stellar events, the RMI
is used to explain the overturn of the outer portion of collapsing cores of supernovas
(Smarr et al. 1981). Proposals have been made to exploit the mixing properties of
the instability in supersonic combustion engines (Yang, Kubota & Zukoski 1993).
Conversely, in the context of inertial confinement fusion, the RMI-induced mixing
between fuel and capsule is a liability which provides considerable challenges in
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achieving the required compression (Lindl, McCrory & Campbell 1992). This last
example alone has motivated considerable interest in the fundamental aspects of the
RMI; recent reviews of the RMI include Zabusky (1999) and Brouillette (2002).

This paper examines, by computational simulation, a canonical Richtmyer–
Meshkov instability realized within the confines of a shock-tube as a planar shock
interacts with a co-planar density interface formed by the contact between two gases,
air and sulfur hexafluoride (SH6) (Vetter & Sturtevant 1995). Slight perturbations or
irregularities in the density interface, for example local deviations from co-planarity,
form the density misalignments required to initiate RMI during shock interaction. A
second and much more energetic RMI occurs after the initial shock has traversed
the extent of the shock-tube, reflected off the tube end and reshocks the now greatly
distorted interface.

The double-shock process produces a large dynamical range of turbulent scales, re-
quiring, with presently available computational resources, the techniques of large-eddy
simulation (LES). This approach entails a loss of detailed information contained in
fine unresolved scales whose dynamical interaction with the computationally resolved
scales is only modelled. Because mixing of the two gases in the turbulent zone is an
essentially small-scale (subgrid) process, conventional LES, with its exclusive focus on
resolved-scale transport, cannot accurately capture this important aspect of the flow.
Owing to its structural ansatz, using vortices that are local (asymptotic) solutions to
the Navier–Stokes equations at the subgrid level, the stretched-vortex model enables
estimation of the contribution to certain statistical quantities from scales below the
resolved-scale cutoff. This, together with resolved-scale information, allows some
degree of truly multiscale modelling of the flow, including predictions of mixing.

Apart from the physical modelling issues associated with LES, simulation of com-
pressible turbulent flows demands two mutually exclusive numerical approaches. On
one hand, the presence of shocks in three-dimensional flows, whose length scale is of
the order of the mean free path, implies that the numerical method must be of a shock-
capturing type. On the other hand, turbulence is better simulated when the numerical
method is non-dissipative. Since all shock-capturing methods are dissipative, two mu-
tually orthogonal numerical requirements arise. To address this difficulty, we develo-
ped hybrid numerical methods that are shock-capturing around discontinuities
(shocks) and revert to centred non-dissipative discretizations in the remaining regions
of the flow, including those encompassing the regions of turbulent activity. The present
method is an extension of the hybrid centred-upwinded algorithm of Hill & Pullin
(2004).

The target experiment of Vetter & Sturtevant (1995) and the modelling of the
laboratory initial and boundary conditions used at present are discussed in § 2. There
follows, in § 3, a short description of the relevant filtered Navier–Stokes equations
and the stretched-vortex subgrid-scale (SGS) model used in the simulations. In § 4, we
give an account of the hybrid numerical scheme employed. The main resolved-scale
simulation results are presented in § 5. The multiscale modelling based on subgrid
continuation is described in § § 6 and 7. This includes predictions of subgrid mixing
properties and estimates of the effect of Schmidt number on both scalar spectra and
scalar probability density functions (p.d.f.).

2. Flow description
We discuss, in the following order: the experimental flow conditions, simulation

boundary conditions, the treatment of the sidewalls of the shock-tube, the endwall of
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Figure 1. Geometry of the simulation domain for the Mach 1.50 case, indicating the location
of the mathematical origin relative to the reflecting endwall. Note the full simulation domain is
square in (y, z)-cross-section with periodic boundary conditions also applied at y, z = ±0.135 m.
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Figure 2. Approximate wave diagram for the interaction of a M = 1.50 shock with the air/SF6

interface. Both the exit of the initial reflected shock and the primary shock are indicated, as is
the field of view for the flow-visualization system.

the shock tube and the open end of the tube and, finally, the initial configuration. A
schematic of the initial flow configuration, including the incident shock, the perturbed
interface between the two test gases, and other features of the geometry and boundary
conditions, is shown in figure 1. Figure 2 shows a one-dimensional wave-diagram of
the RMI in an (x, t)-plane, including the first interaction of the shock with the
interface, shock reflection off the tube endwall, reshock, and the interaction of a
reflected expansion (resulting from reshock) with the gas interface.

2.1. Experimental domain and parameters

For the purpose of validation, we have chosen for numerical investigation the air/
sulfur hexafluoride (SF6) Richtmyer–Meshkov variable-length shock-tube experiments
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IIb VIb VIIb

Incident Mach number 1.24 1.50 1.98
Pressure (kPa) 40 23 8
Length, membrane to endwall (cm) 110 62 49
Instantaneous velocity (m s−1) 72 150 287
Shocked growth rate (m s−1) 2.1 4.2 7.5
Reshocked growth rate (m s−1) 17.0 37.2 74.4
Shocked observation times (ms) 4.7–6.7 2.2–3.2 1.7–2.5
Reshocked observation times (ms) 15.5–16.5 4.0–5.5 1.7–2.5

Table 1. The test conditions and growth rates of the interface thickness from Vetter &
Sturtevant (1995). These experiments correspond to IIb , VIb , and VIIb therein and the
observation times are approximate as they result from figure 6 of that work.

Property Air SF6

Molecular mass (kg kmol−1) 29.04 146.07
Ratio of specific heats: γ 1.40 1.09
Density ( kgm−3) 1.18 5.97
Kinematic viscosity (10−6 m−2 s−1) 15.7 2.47
Prandtl number 0.71 0.90
Diffusion coefficient in air (10−6 m−2 s−1) 20.4 9.7

Table 2. Gas properties of air and SF6 at 25 ◦C and 1 atm, as used in the simulation.

of Vetter & Sturtevant (1995). In these experiments, a shock in air travelled down the
tube with a Mach number strength ranging from 1.18 to 1.98. The shock encountered
a contact surface in the form of a thin membrane interface separating the air from the
remainder of the tube filled with SF6. The passage of the transmitted shock induced
a mixing zone between the air and SF6 which was instantaneously accelerated to
reported velocities of 56 m s−1 to 287 m s−1, depending on the case. Using either spark-
schlieren photography or high-speed motion pictures, data were recorded as the mixing
zone passed the field of view of an observation port, and data were again recorded after
the transmitted shock reflected off the closed end of the shock tube and ‘reshocked’
the mixing zone, bringing the mixing zone back into the observation field and reducing
its mean velocity substantially. The length of the shock tube from the interface to the
endwall was adjusted prior to each experiment to ensure that the reshocked mixing
zone would develop in view. Vetter & Sturtevant (1995) measured the instantaneous
width of the mixing zone and calculated two mixing-zone growth rates, one after the
initial shock and a second following reshock, for each experiment. These growth rates
serve as the primary comparison between the experiments and the present simulations.

Owing to diagnostic limitations, the experiments with single-spark schlieren allowed
for very few measurements of the mixing-layer width as the mixing zone passed the
observation port. For this reason, the comparisons in this paper focus on three of the
experiments in which high-speed motion picture photography was used, as the growth
rates are ostensibly more accurate. These experiments correspond to Mach numbers
1.24, 1.50 and 1.98 and are referred to as cases IIb, VIb and VIIb, respectively. Table 1
summarizes the experimental configurations and results. In the LES, we match the
physical dimensions of the experimental domain and the particular gas properties of
air and SF6, as summarized in table 2. The shock tube itself was square in cross-
section with dimensions 0.27 m × 0.27 m and of variable down-tube length. More
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precisely, in right-handed Cartesian coordinates, x = (x1, x2, x3) = (x, y, z), the positive
x-axis aligns with the down-tube direction with x = 0 at the initial gas interface
towards the reflecting wall. The simulation domain was −0.20 m � x � L × −0.135 m �
y � 0.135 m × −0.135 m � z � 0.135 m where L is 1.10 m, 0.62 m or 0.49 m for different
runs. A small portion of the tube with x < 0 is included in the computation, so that
reflected and transmitted shocks will be essentially planar when they exit the domain.

2.2. Modelling boundary conditions

To facilitate interpretation of statistical results, the sidewalls of the shock tube in
the simulations were replaced with periodic boundary conditions, thus allowing the
calculation of planar spectra in quantities of interest and providing two statistically
homogeneous directions. In making such a boundary approximation, the non-uniform
boundary layer flow at the physical walls is absent from the simulation, but this is not
found to be critical in comparing with the experiment. In fact, because such boundary
effects lead to ambiguities in the interpretation of flow-visualization photographs,
Vetter & Sturtevant (1995) explicitly designed their experiment to ensure that the
shock-wave/boundary-layer interaction would not play a dominant role in the mea-
sured growth rates.

The endwall of the shock tube (located at x = L) is, computationally, a reflecting
boundary. No wall model or other special treatment was required in the large-eddy
simulations at the reflecting end of the tube. The measured widths and approximate
locations of the mixing zone suggested that the turbulent region does not reach the
reflecting wall, an assumption which was born out in our simulations. In the computa-
tional domain, the shock tube is truncated with an open end. The treatment of this
open end models the effects of the unsimulated remainder of the physical tube. To
allow for stable long-time integration after the reflected shock has exited the computa-
tional domain, the density, velocity, and pressure are prescribed in the form of charac-
teristic boundary conditions (Thompson 1987) at the exit plane.

2.3. Modelling initial conditions

The flow is initialized in three regions distributed from left to right: a post-shock
state in the air side consistent with a shock travelling at the corresponding Mach
number in the positive direction towards the contact between the two gases, a region
of unshocked stationary air, and finally unshocked stationary SF6. The quiescent
gases are assumed to be in thermal equilibrium and under uniform pressure. In
agreement with the experiments, this initial pressure is taken, for each case, to be
40 kPa, 23 kPa, or 8 kPa (see table 1) and a room temperature of 286◦K was assumed.
Taken together, these choices determine the complete state of the unshocked gases. A
schematic of the initial flow configuration, including the incident shock, the perturbed
interface between the two test gases, and other features of the geometry and boundary
conditions, is shown in figure 1.

The shock is initialized at a location of −0.05 m in the x-direction and the lateral
centroid of the perturbed contact at x = 0.0 m leading to an initial shock interaction
which instantaneously accelerates the contact. Vetter & Sturtevant (1995) indicate that
a relatively weak expansion wave from the driver section of the shock tube follows,
0.5 ms in the Mach 1.5 case, after the shock. In single-mode Mach 1.5 experiments with
the same shock tube and gases Prasad et al. (2000) also observe this expansion and
indicate that its amplitude was sufficiently small as to be ignored in the presentation
of their results. In light of both this and the fact that insufficient details were presented
for the cases of interest, this expansion wave was neglected in the initial conditions for
our simulations. Also, no attempt was made to model the effects of the composition
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of the thin (0.5 µm) nitrocellulose membrane, but the shape was represented as a
perturbed interface. These perturbations result from the wire mesh that was installed
to support the membrane and they provide spatial variations in density which in turn
give rise to the Richtmyer–Meshkov instability. The wire mesh formed a regular grid
with spacing of 1 cm in both the horizontal and vertical directions (the wire diameter
was 0.23 mm). Prior to each experiment, the membrane was pushed into the mesh
with an estimated amplitude of about 1 mm. Vetter & Sturtevant (1995) showed that
by varying the order of the vertical and horizontal meshes and the membrane, the
pre-reshock growth rates could vary by an order of magnitude. It is unclear to what
extent this is due to the additional mixing of the membrane or to the sensitivity to the
initial interface shape. Additionally, Greenough & Burke (2004) have demonstrated
that the initial density perturbation spectrum can have a strong effect even on the
nonlinear stages of mixing-layer growth. In light of the uncertainty in the initial
conditions and the role of the membrane, the actual width of the mixing zone is not
expected to compare well during the observation times prior to reshock.

An interface representation similar to that employed by Cohen et al. (2002) is used
here to incorporate small modes, ostensibly produced by the wire mesh, and additional
symmetry-breaking modes which model the more random smaller-scale irregularities.
The simulation interface was taken to be the linear combination of a regular ‘egg-
carton’ perturbation with a much smaller irregular perturbation. Mathematically, the
interface was prescribed as follows:

xI (y, z) = a0| sin(πy/λ) sin(πz/λ)| + a1h(y, z), (2.1)

where the first term, the so-called ‘egg-carton’, | sin(πy/λ) sin(πz/λ)|, models the
regularity of the mesh and the second, h(y, z), takes the form of a symmetry breaking
perturbation with random phase, but with a prescribed initial power spectra of the
form k4exp(−(k/ko)

2). The function h(y, z) was computed once and saved so that it
could be used for all the runs with the same computational resolution.

The fundamental carton wavelength, λ, was taken to be 27 m/14 ≈ 0.02 m as a com-
promise between the actual grid spacing of 0.01 m and the desire to allow enough res-
olution so that each perturbation could evolve into the nonlinear regime. Cohen et al.
(2002) found it necessary to strike a similar balance. In the non-symmetric portion
h(y, z), the parameter ko = 4 was chosen, which corresponds to a peak wavelength
of (π/

√
8) m, and values of the coefficients a0 and a1 were 0.25 cm and 0.025 cm,

respectively.

3. Equations of motion and subgrid modelling
3.1. Two-component Favre-filtered Navier–Stokes equations

The Favre-filtered (i.e. density weighted) Navier–Stokes equations provide a natural
separation of the large scales to be simulated from the small scales to be modelled
(Zang, Dahlburg & Dahlburg 1992). We denote Favre-filtered quantities by

f̃ =
ρf

ρ
, (3.1)

where f is an arbitrary field, ρ is the density and the overbar indicates the filtering
operation

f (x) =

∫
G(x − x ′)f (x ′) dx ′, (3.2)
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with convolution kernel G. The filtering procedure combined with some modelling
assumptions (e.g. negligible subgrid viscous work and triple correlations) leads to the
following LES equations of motion for the density ρ, momentum ρũi , total energy E,
and a scalar representing mixture fraction ψ̃ . The dimensional conservation transport
equations are

∂ρ

∂t
+

∂ρũj

∂xj

= 0, (3.3a)

∂ρũi

∂t
+

∂(ρũi ũj + pδij )

∂xj

=
∂dij

∂xj

− ∂τij

∂xj

, (3.3b)

∂E

∂t
+

∂(E + p)ũj

∂xj

=
∂

∂xj

(
κ

∂T

∂xj

)
+

∂dji ũi

∂xj

−
∂qT

j

∂xj

, (3.3c)

∂ρψ̃

∂t
+

∂(ρψ̃ũj )

∂xj

=
∂

∂xj

(
ρD̃

∂ψ̃

∂xj

)
−

∂q
ψ
j

∂xj

, (3.3d)

where repeated indices denote summation and the subgrid terms

τij = ρ(ũiuj − ũi ũj ), (3.4a)

qT
j = ρ( ˜cpT uj − c̃pT̃ ũj ), (3.4b)

q
ψ
j = ρ(ψ̃uj − ψ̃ũj ), (3.4c)

represent subgrid stress tensor, and the heat and scalar transport flux, respectively.
The filtered total energy E contains the subgrid kinetic energy and is given by

E =
p

(γ̃ − 1)
+ 1

2
ρ(ũkũk) + 1

2
τkk, (3.5)

while the filtered pressure, p, is determined from the ideal equation of state for a
mixture of gases,

p =
ρRT̃

m̃
, (3.6)

where R is the ideal gas constant; we have neglected temperature–species composition
correlations in (3.6). This equation, together with (3.5), defines the Favre-filtered
temperature T̃ as a function of E, kinetic energy and the composition of the mixture.
As there are only two gases, the single scalar ψ is sufficient to specify the local mixture
composition. Formally, air is assumed to behave as a single species with the average
molecular weight of air. Within these assumptions, ψ takes the value 0 in the air side
and 1 in the SF6 side. The mass fraction of air is χa = 1 − ψ , likewise for SF6 χs =ψ .
The mean molecular weight is then given by 1/m̃ = (χ̃a/ma + χ̃s/ms), where ma and
ms denote the molecular weights of air and SF6, respectively.

Transport properties of the mixture are determined from binary mixing rules and
the pure component transport properties (Reid, Pransuitz & Poling 1987). In the case
of viscosity µ (similarly for heat conduction, κ , and diffusivity, D̃), each gas obeys
µl = µo

l (T̃ /To)
0.786, with l = a, s (air and SF6, respectively), then

µ =
µaχ̃am

−1/2
a + µsχ̃sm

−1/2
s

χ̃am
−1/2
a + χ̃sm

−1/2
s

. (3.7)
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The deviatoric Newtonian stress tensor dij of the mixture with appropriately filtered
quantities is then expressed as

dij = µ

((
∂ũi

∂xj

+
∂ũj

∂xi

)
− 2

3

∂ũk

∂xk

δij

)
. (3.8)

Finally, the average specific heat ratio is defined by

γ̃ =
c̃p

c̃v

, (3.9)

where the specific heat capacity at constant pressure is given by

c̃p = cp,aχ̃a + cp,s χ̃s, (3.10)

and c̃v = c̃p − R/m̃. The element heat capacities, cp,l , are assumed to be independent
of temperature in the present study.

The filtering procedure described in (3.2) is purely formal. It is not, and cannot
be, performed in LES, unless we have the full DNS (or experimental) fields in hand,
in which case LES is irrelevant. Here and hereinafter, we identify variables defined
formally by (3.1) and (3.2) with resolved-scale quantities in actual LES. This is strictly
a resolved-scale modelling assumption at the level of those for subgrid quantities
described below. For a discussion of this and other conceptual foundations of LES,
see Pope (2004).

3.2. Application of the stretched-vortex subgrid model

Closure of the LES equations is completed in the form of a model for the subgrid inter-
action terms: stress tensor, τij , turbulent temperature flux, qT

i , and mixture fraction

flux, q
ψ
i . This is achieved by using the stretched-vortex model, originally developed

for incompressible LES by Misra & Pullin (1997), but extended to compressible flows
(Kosovic, Pullin & Samtaney 2002) and subgrid scalar transport (Pullin 2000). In
this model, the flow within a computational grid cell is assumed to result from an
ensemble of straight, nearly axisymmetric vortices aligned with the local resolved
scale strain or vorticity. The resulting subgrid stresses are

τij = ρk̃
(
δij − ev

i e
v
j

)
, (3.11a)

qT
i = −ρ

∆c

2
k̃1/2

(
δij − ev

i e
v
j

)∂(c̃pT̃ )

∂xj

, (3.11b)

q
ψ
i = −ρ

∆c

2
k̃1/2

(
δij − ev

i e
v
j

) ∂ψ̃

∂xj

, (3.11c)

where k̃ =
∫ ∞

kc
E(k) dk is the subgrid energy, ev is the unit vector aligned with the

subgrid vortex axis, ν =µ/ρ is the kinematic viscosity and kc = π/∆c represents the
largest resolved wavenumber. This subgrid turbulent kinetic energy, k̃, is estimated
by assuming a spiral vortex of the Lundgren (1982) form, whose energy (velocity)
spectrum for the subgrid motion is given by

E(k) = K0ε
2/3k−5/3exp[−2k2ν/(3|ã|)], (3.12)

where K0 is the Kolmogorov prefactor, ε is the local cell-averaged dissipation (resolved
flow plus subgrid scale) and ã = S̃ij e

v
i e

v
j is the axial strain along the subgrid vortex

axis where

S̃ij =
1

2

(
∂ũi

∂xj

+
∂ũj

∂xi

)
, (3.13)

denotes the resolved rate-of-strain tensor.
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To complete the model, the group prefactor K0ε
2/3 must be calculated for each cell

from the resolved flow. This is done by a structure function matching (Lesieur &
Metais 1996; Voelkl, Pullin & Chan 2000; Pullin 2000). Essentially, the second-order
velocity structure function F2(r) when averaged over the surface of a sphere of radius
∆ gives

F2(∆) =
4

∆

∫ π

0

E(s/∆)

(
1 − sin s

s

)
ds. (3.14)

The spectra, (3.12), and the assumption that the exponential can be ignored when
evaluating at the separation scale ∆ give the group prefactor as

K0ε
2/3 =

F2(∆)

∆2/3A
, (3.15)

where A = 4
∫ π

0
s−5/3(1 − sin s/s) ds ≈ 1.90695. In practice, ∆ and ∆c are taken to be

the grid spacing, �x, and the spherical average of the structure function is computed
as a local estimate using a six-point stencil on the resolved scales

F2(∆) =
1

6

3∑
j=1

(
δũ+

1

2

+ δũ+
2

2

+ δũ+
3

2

+ δũ−
1

2
+ δũ−

2

2
+ δũ−

3

2)
j
, (3.16)

where δũ
±
i = ũi(xo ± ej∆) − ũi(xo) denotes the ith velocity component difference in

the unitary direction ej at the point xo.
This subgrid model is based on subgrid elements in the form of spiral vortices that

are local approximate solutions of the Navier–Stokes equations (Lundgren 1982), and
the scalar transport equations (Pullin & Lundgren 2001) for a constant-density fluid.
It has been applied to two-fluid mixing in Rayleigh–Taylor instability (Mattner, Pullin
& Dimotakis 2004) where the process of subgrid mixing of a variable-density fluid
is modelled, in the sense of (3.11), via an SGS temperature flux treated as a passive
scalar. There is, therefore, no explicit model representation of subgrid baroclinic
vorticity production. Insofar as the SGS vorticity spectrum is eschewed in favour of
the SGS energy spectrum, this deficiency may not be fatal. The effect of small-scale
two-fluid mixing on the velocity spectrum at large wavenumbers and large Reynolds
numbers, remains an open question.

4. Computational approach
4.1. Numerical method

An improved version of the TCD-WENO hybrid method (Hill & Pullin 2004), based
on tuned centre-difference (TCD) stencils is used to integrate the equations of motion
in conjunction with a third-order strong-stability preserving (SSP) Runge–Kutta time-
stepping scheme (Gottlieb, Shu & Tadmor 2001). The spatial discretization has been
constructed explicitly to be shock-capturing, to enforce weak convergence (prediction
of the correct shock speeds), and to revert smoothly to a centred stencil with low
numerical dissipation and good wave-dispersion properties in turbulent-flow regions
away from shocks. Here, the hybrid method uses a bandwidth optimized five-point
centre-difference stencil tuned for better modified wavenumber behaviour at the price
of a reduction in the order of accuracy from fourth-order to second-order. This
tuning was achieved by minimizing the spatial truncation error (Ghosal 1996, 1999)
for the Navier–Stokes equations under model assumptions of a von Kármán spectra.
In Hill & Pullin (2004), the TCD scheme was shown to work well on 323 LES of
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decaying compressible turbulence with a turbulent Mach number of Mt = 0.488 and
an initial Taylor Reynolds number Reλ =175. Only in thin regions containing shocks
does the hybrid method switch to a finite-difference WENO scheme (Jiang & Shu
1996) whose optimal candidate stencil has been modified to match that of the TCD.
The implementation of the hybrid flux-based TCD portion of the scheme used in this
paper is the extended version presented in Pantano et al. (2005) which incorporates a
flux-based representation for adaptive mesh refinement.

The present flux-based numerical method ensured discrete mass, momentum and
energy conservation with unique interpolated flux values at the grid cell wall, even
when the scheme switches method. To illustrate the technique, consider a uniform
one-dimensional discretization of a function f (x). The fluxes, Fi+1/2 at the right-hand
sidewall of the ith computational grid cell, and the numerical approximation of the
derivative of f (x) are related through

∂f

∂x

∣∣∣∣
i

� Dxf =
Fi+1/2 − Fi−1/2

�x
, (4.1)

where �x denotes the grid spacing and Dx , the finite-difference stencil operator. The
smallest five-point centred stencil operator has the form

Dxf =
1

�x
(α(fi+2 − fi−2) + β(fi+1 − fi−1)), (4.2)

where β = 1/2 − 2α is required for at least second-order accuracy; α = −1/(12) is the
standard fourth-order stencil, and α = −0.197 corresponds to the TCD stencil. The
divergence-like TCD flux is given by

Fi+1/2 = α(fi+2 + fi+1) + (α + β)(fi+1 + fi). (4.3)

This can be verified by introducing (4.3) into (4.1). To ensure numerical stability,
the discrete version of the convective term of the momentum, scalar transport and
energy equations are written in the compressible extension of the skew-symmetric
form (Blaisdell 1991), such that the summation by parts property is satisfied. This
implies that derivatives of quadratic products of two functions f and g are actually
evaluated as

∂(fg)

∂x
� 1

2
(Dx(fg) + f Dxg + gDxf ). (4.4)

Moreover, it is possible to show that this skew-symmetric form can also be written in
flux form (Ducros et al. 2000). For the case of the TCD scheme, the skew-symmetric
flux is given by

F T CD
i+1/2 = 1

2
{α[(gi+1 +gi−1)(fi+1 +fi−1)+(gi+2 +gi)(fi+2 +fi)]+β[(fi+1 + fi)(gi+1 +gi)]}.

(4.5)

This form is used for the convective terms in the momentum, scalar and energy equa-
tion (cast in the internal energy variance conserving form suggested by Honein &
Moin 2004), that reads

∂(ρũiũj )

∂xj

�→ 1

2

∂(ρũiũj )

∂xj

+
ρũj

2

∂(ũi)

∂xj

+
ũi

2

∂(ρũj )

∂xj

, (4.6a)

∂(ρψ̃ũj )

∂xj

�→ 1

2

∂(ρψ̃ũj )

∂xj

+
ρũj

2

∂(ψ̃)

∂xj

+
ψ̃

2

∂(ρũj )

∂xj

, (4.6b)
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IIb VIb VIe VIIb

Incident Mach number 1.24 1.50 1.50 1.98
Computational grid 616 × 1282 388 × 1282 776 × 2562 327 × 1282

Computational resolution: �x (cm) 0.21 0.21 0.105 0.21
Simulation time (ms) 16.62 6.35 12.0 2.57
CPU hours 3982 972 38 400 544

Table 3. The computational cost in CPU hours for each of the runs. Simulation VIe is a
higher resolution version of VIb computed to about twice the experimental time.

∂((E + p)ũj )

∂xj

�→ 1

2

∂(ρẽũj )

∂xj

+
ρũj

2

∂ẽ

∂xj

+
ẽ

2

∂(ρũj )

∂xj

,

+
ũi

2

∂(ρũi ũj )

∂xj

+
ρũiũj

2

∂ũi

∂xj

+ p
∂uj

∂xj

+ ũj

∂p

∂xj

, (4.6c)

where ẽ = E/ρ − ũkũk/2 is the internal energy.
Around shocks, the WENO scheme naturally computes cell wall fluxes, F WENO

i+1/2 ,
based on a convex weighting of candidate stencils in an attempt to minimize
interpolation across discontinuities. The present hybrid scheme simply selects the
WENO fluxes for cells in a tight area around shocks, but uses the centred stencils
elsewhere according to the following pressure and density relative curvature criteria

C = {x ∈ R3 : |αp| > c�x2, |αρ | > c�x2, αpαρ > 0}, (4.7)

where

αp =
pi+1 − 2pi + pi−1

pi+1 + 2pi + pi−1

, (4.8a)

αρ =
ρi+1 − 2ρi + ρi−1

ρi+1 + 2ρi + ρi−1

. (4.8b)

Moreover, all grid cells in a neighbourhood of radius n�x of the cells that satisfy
the test condition are marked as containing the discontinuity. The three-dimensional
version of this test is used in the simulations. The values of c and n that proved to
give the best results were 2.5 × 103 and 5, respectively. Then, the hybrid flux takes the
form

Fi+1/2 =

{
F WENO

i+1/2 in C,

F TCD
i+1/2 in C,

(4.9)

where C denotes the complement of C.

4.2. Simulations

Four large-eddy simulations were performed and the physical parameters chosen to
match the experiments as summarized in table 1. Three of these were at a resolution
defined by the grid spacing of �x = 0.21 cm. They ran to the end of the experimental
time with modest computational cost (table 3). These simulations were of sufficient
resolution to form the basis of our comparisons of mixing-layer width with the
experiments. The fourth simulation was of the Mach 1.50 case (VIe), it used twice
the resolution (i.e. �x =0.105 cm) and was integrated for twice the experimental time
to allow for a much more detailed analysis of the flow evolution and the subsequent
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(a) (b)

Figure 3. Images of the mixing zone for case VIe at (a) t =4.8 ms, (b) t = 10 ms.

turbulent decay of the mixing region. This case was chosen in part because of its
modest domain size (L = 0.62 m) and the fact that it was the most throughly studied
experiment in Vetter & Sturtevant (1995). Figure 3 shows instantaneous rendering
of isosurfaces of a mixture fraction at several times during the evolution of case
Mach 1.50, exemplifying the different states of the flow.

The simulations were all performed by a parallel FORTRAN90 program on QSC,
an unclassified Tru64 cluster at the Los Alamos National Laboratory; each processor
is an Alpha EV6 with 4GB of memory and a clock speed of 1.25 GHz.

5. Simulation results (traditional statistics)
Traditional statistical results (i.e. those of the resolved fields) obtained from the LES

are summarized here. First, the mixing-layer width is defined and comparisons with
the experiments are made based on the modest resolution runs. The higher-resolution
Mach 1.50 mixing-layer width is also obtained up to times that are much longer than
the experimental time of 6.35 ms and the turbulent kinetic energy is also computed;
this analysis helps to gain a better understanding of the importance of the shocks and
subsequent expansion waves that evolve in the domain. Plane-averaged flow quantities
on both the resolved scale and subgrid are presented, illustrating the low turbulent
Mach number in the flow and the role of the subgrid in dissipation and kinetic energy.
Following this, the mixing zone is examined in the late time stages after the shock
and expansion interactions. During this time, the mixing zone grows slowly at best
and exhibits some of the characteristics of decaying weakly compressible turbulence.
Two statistical measurements are introduced: the instantaneous plane average, that
for an arbitrary field f is defined as

〈f (x, t)〉 =
1

A

∫ ∫
f (x, y, z, t) dy dz, (5.1)



Large-eddy simulation of a Richtmyer–Meshkov instability 41

IIb VIb VIIb

Incident Mach number 1.24 1.50 1.98
Experimental final layer thickness (cm) 13.7 10.2 8.25
Computed final thickness (cm) 12.2 10.6 8.0
Measurement time (ms) 16.50 6.25 2.50
Simulation time (ms) 16.62 6.35 2.57
First shock time in simulation (ms) 0.119 0.098 0.073

Table 4. A comparison of the mixing width at the end of the experiment with the computed
mixing width at a similar time in the simulation. The experimental times and widths are
approximate as they were measured from figure 6 of Vetter & Sturtevant (1995).

where A is the y/z cross-sectional area of the tube (A = 0.272 m2), and the volume
average

|f (t)| =
1

V

∫ ∫ ∫
f (x, y, z, t) dx dy dz, (5.2)

where V is the volume of the computational domain. Note that (5.2) is equivalent to
integrating (5.1) in the x-direction and dividing by the length of the domain.

Spectra are computed in the centre of the mixing zone to confirm that universal
k−5/3 scaling is recovered. Reynolds numbers and dissipation lengths are calculated
from the flow and the bubble and spike mixing process is analysed by examining the
resolved variances. Additionally the mixing proprieties across the width of the layer
are investigated.

5.1. Mixing-layer growth and comparison with experiment

To make contact with the mixing-zone growth rates estimated by Vetter & Sturtevant
(1995) we define a mixing width δMZ from the planar averaged mixture fraction,
according to

δMZ(t) = 4

∫
tube

(1 − 〈ψ〉)〈ψ〉 dx. (5.3)

An analytic example can be helpful in understanding this measure better. Assume
a simple average profile that represents the transition from air (ψ =0) to
SF6 (ψ = 1) and centred at xc in an infinitely long tube to be of the form
〈ψ〉 = (1 + tanh(2(x − xc)/h))/2. Introducing this function into (5.3) gives the expected
mixing width δMZ = h. In the actual experiments, measurements were taken from
photographs of the mixing zone, but the way in which these measurements of the
width were made was not reported. This uncertainty tempers the degree to which we
draw conclusions in our comparison, and, more broadly, affects the comparison of
most turbulent RMI experiments to theoretical results and computational simulations.

The computed widths of the mixing zone for the different modest-resolution
simulations are shown in figure 4, where the experimental growth rates are plotted
as solid lines of duration corresponding to the experimental observation times. The
agreement in growth rate for all three simulations are quite reasonable. As the simula-
tion initial perturbations were much larger than those inferred for the experiment, no
actual agreement in the mixing-zone width was anticipated in the early stages of the
simulation. The measured width during the times prior to reshock were about 50 %
of the computed widths. The post-reshock thicknesses agree well with the experiment,
table 4, with discrepancy of the order of 4 % for the Mach 1.50 and 1.98 cases
and 10% for the Mach 1.24 case. Note that t =0 in the experiments corresponds
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Figure 4. The evolution of the mixing-layer width δMZ. The growth rates inferred from the
experiments are indicated as straight lines with the appropriate slopes drawn in the approximate
times over which they were observed. See table 4 for Mach numbers.

to the first shock interaction, but in simulations, the shock is initialized at 5 cm to
the left of the interface; hence, the offset in measurement times. The much better
agreement after reshock is consistent with the detailed Mach 1.50 experiment of Vetter
& Sturtevant (1995) (summarized in their figure 8) in which the initial conditions
were varied by altering the membrane and wire mesh configuration. In the case of
two different initial amplitudes, they found very similar post-reshock behaviour and
nearly identical widths were recorded.

Figure 5 shows the computed mixing width for the higher resolution Mach 1.50
run where the experimentally measured growth rates of Vetter & Sturtevant (1995)
are also indicated. Both shock–interface interactions are apparent in the form of
sharp compressions of the mixing zone. These compressions are followed by periods
of mixing-zone growth. The interaction of an expansion with the growing mixing
layer can also be observed in the slight change of the layer growth rate at t ≈ 4.7 ms.
This expansion is generated by the reshock event, after it reflects from the wall, and
impinges on the mixing layer (see figure 2). The evolution of the mixing width after
reshock can then be divided into distinct parts: the initial growth from the reshock
which starts to decay around 4.5 ms, further growth stimulated by the reflected-
expansion event, and peaking at 6 ms followed finally by turbulent saturation and a
subsequent very slow period of growth. These stages in the life of the post-reshock
turbulent mixing zone can be seen clearly in the turbulent kinetic energy of the flow.

5.2. Turbulence statistics

Planar-averaged statistics of the different flow fields for the case with initial shock
Mach number of 1.50 are reported here. Results are presented at two times: t = 1 ms
shortly after the initial shock interaction while the mixing layer is initially growing
but not fully turbulent, and t =10 ms after the reshock and expansion wave events at
a time when the mixing zone is fully turbulent. The Favre-plane-averaged turbulence
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Figure 5. The evolution of the mixing-layer width δMZ. The experimentally measured values
are indicated as are the approximate times in which they were observed.

statistics of interest include the resolved-scale turbulent kinetic energy

〈K̃〉 =
1

2

(
〈ρũkũk〉

〈ρ〉 − 〈ρũk〉〈ρũk〉
〈ρ〉2

)
, (5.4)

the resolved-scale turbulent dissipation

〈εres〉 =
〈d ′

ij S̃
′
ij 〉

〈ρ〉 , (5.5)

the subgrid turbulent kinetic energy

〈k̃〉 =
〈τkk〉
2〈ρ〉 , (5.6)

and the subgrid energy transfer

〈εsgs〉 = −
〈τ ′

ij S̃
′
ij 〉

〈ρ〉 , (5.7)

where primes denote fluctuations with respect to the plane-average. The total turbulent
kinetic energy is estimated then as K = 〈K̃〉 + 〈k̃〉 and the turbulent dissipation as
ε = 〈εsgs〉 + 〈εres〉. These quantities are used to define the turbulent intensity,

u′ =

√
2K

3
, (5.8)

and the turbulent Mach number

Mt =
u′

〈c〉 , (5.9)
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Figure 6. The (y, z)-plane averaged density 〈ρ〉 (solid line) and ratio of specific heats 〈γ̃ 〉
(dotted line) profiles (a) t = 1ms, during the evolution of the flow. (b) t = 10 ms.

using the average of the speed of sound c =
√

γ̃ p/ρ. A turbulence integral scale can
also be defined as

� =
u′3

ε
, (5.10)

allowing the calculation of the turbulent Reynolds number as

ReT =
u′�

〈ν〉 . (5.11)

In figure 6, the density at time t =1 ms shows a small reflected shock near x = −0.2 m
travelling to the left. The contact, which will evolve into the mixing zone, can be seen
in both the density and the ratio of specific heats near x = 0.15 m following behind
the transmitted shock (x = 0.225 m) as both travel to the right. In the later time
plot, t =10 ms, the shock has reflected off the closed end of the tube at x =0.62 m,
reshocked the mixing zone and left the domain. Here, the much larger extent of the
mixing zone is clearly visible. The shocks and expansion interactions with the mixing
zone are inherently compressible effects and form the principal mechanisms for the
deposition of vorticity in the mixing zone.

One useful feature of the stretched vortex subgrid model is its ability to
estimate directly local subgrid quantities such as the local subgrid kinetic energy
k̃ and the energy transfer off-grid. Figures 7 and 8 show that 〈k̃〉 is of the order of 10
to 20 % of the resolved counterpart and, as expected from a proper LES, the planar-
averaged subgrid energy transfer, 〈εsgs〉 is about 10 times the resolved dissipation prior
to reshock and 100 times larger after reshock. This is another indication that the
turbulence scales, down to the unresolvable range, fully develop only after reshock.

Figure 9 shows profiles of turbulent Mach number at two different times. It is
observed that the relative effects of compressibility during the evolution of the mixing
zone peak at its centre. While the plot at t = 1 ms has a much lower overall turbulent
Mach number, the larger peak of Mt = 0.07 in the post-reshock, t = 10 ms, stage is
clearly in only the weakly compressible range. Thus, excluding the shock interaction
events, compressibility effects in the turbulence are not large for this simulation.

The length scale � and turbulent Reynolds number ReT are presented in a time
range 7 ms − 10 ms which starts shortly before the energy cascade forms, as indicated
by the development of the k−5/3 scaling by time t = 7.6 ms, shown next. In figure 10,
it can be seen that the length scale and Reynolds number decay during this period
at the centre of the mixing zone as the large bubbles created by reshock interact and
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compete. It is noted that � is comparable to the 2 cm spacing in the initial interface
perturbation and although 〈K̃〉 has dropped substantially by t = 7 ms, ReT is still in
the range of 30 000 to 100 000.
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Figure 11. Volume-averaged total turbulent kinetic energy |K̃ | + |k̃| as a function of time for
the M = 1.50 case.

Finally, a global turbulence measure can be obtained from the volume-averaged
turbulent kinetic energy. The total turbulent kinetic energy deposited by the shock-
contact interactions as well as expansion fan-contact interactions can be measured
using this statistical quantity. Figure 11 shows the total amount of energy deposited by
the initial shock, visible as a very small bump close to the time origin, as well as that
owing to the reshocking event, at 3.5 ms. Following a steep decay in energy forming
the first stage in the post-reshock mixing zone’s life, a subsequent interaction with
the expansion fan, shown in the wave diagram (figure 2), deposits a relatively large
amount of energy over the duration of approximately 1 ms, peaking near 6 ms. This
last vorticity deposition corresponds to the second period of post-reshock growth.
After these events, there is a very slow period of decay since none of the additional
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Figure 12. Radial power spectra of velocity E2D
u (k) computed in the centre plane of the TMZ

at four different times: t = 4.5ms (dotted line), t = 6.5ms (dashed-dot line), t = 7.6 ms (dashed
line) and t = 10ms (solid line). All computed wavenumbers shown and kmax = 128.

weak expansion fans and compression waves coming from the wall posses a sufficiently
large pressure gradient to deposit noticeable amounts of vorticity. It is notable that
the first expansion fan deposits substantial amounts of vorticity, and kinetic energy.
This energy is comparable to that of the re-shocking event and occurs because
the expansion–fan interaction takes place over a longer time period during which the
mixing zone is rather thick, with a wide range of spatial scales and gradients in the
density field.

5.3. Velocity, density and scalar spectra

The simulation domain was designed with periodic boundary conditions in the cross-
section of the tube, in part to allow for two isotropic directions in the flow and
to enable the calculation of instantaneous radial spectra. The radial spectra of an
arbitrary function f (y, z) is defined as

E2D
f (k) = 1

2
k

∫ 2π

0

|F̂ (k, θk)|2 dθk, (5.12)

where F̂ is the Fourier transform of f in polar wavenumber space with k and
θk denoting the radial and azimuthal wavenumbers. In practice, this is most easily
calculated in Cartesian wavenumber space ky, kz by annular bin-counting. The spectra
of the individual velocity components u = u1, v = u2, w = u3 as well as of the density
ρ and scalar ψ was calculated using (5.12).

The radial velocity spectra was always calculated at the plane located in the centre
of the mixing zone. The results shown in figure 12 indicate that the spectra assumes
a persistent k−5/3 scaling after the passage of the expansion fan and a reorganization
of the deposited kinetic energy. The expansion interaction starts at about 4.7 ms and
continues until 6 ms, as seen in the wave diagram figure 2 and in the plot of the
total turbulent kinetic energy figure 11. The Kolmogorov-like k−5/3 energy spectra
develops by t = 7.6 ms and persists for the remainder of the simulation. Similarly,
the density and scalar spectra also develop a persistent k−5/3 scaling by this time.
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Figure 13 demonstrates that while scalar and density are not uniquely related (ψ is
constrained mathematically to be 0 � ψ � 1 and obeys a different governing equation)
their spectra correlate well. The highest resolved wavenumbers in figure 13 show
minor effect of aliasing errors. We emphasize that no explicit filtering of any kind
was performed in the present LES and WENO is not used in this region of the flow.

5.4. Mixing statistics

The mixture fraction field ψ parameterizes the degree of mixing of the two gases.
Although the flow at late times is quite turbulent, mixing statistics display inhomo-
geneities associated with the non-isotropic direction x at all times during our
simulations. Physically, this is related to the presence of different gasses and the
very different bubble-spike structures characteristically observed on either side of the
mixing zone. We examine the statistics of the mixture fraction in planar cuts taken
from the centre of the mixing zone, xc, as well as from planes one quarter of the
mixing width δMZ from the centre on either side x±

q = xc ± δMZ/4.
The variance for the density, velocity and mixture fraction, figure 14, highlight

the action of the large scales in the flow. Although the density variance is clearly
stronger on the SF6 side, the highest turbulent velocities are found closer to the centre
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of the mixing zone. The two peaks in the mixture fraction variance correspond to
dominantly bubble and dominantly spike portions of the mixing zone separated by a
region of low variance. The energetic structures penetrating into air from the mixing
zone produce much larger mixture fraction variances.

To provide a more complete picture of the mixing evolution of the two gases,
we investigate now the behaviour of the mixture fraction p.d.f. For variable density
flows, it is natural to employ the Favre p.d.f. (Bilger 1977), formally obtained from
the Reynolds joint density-mixture fraction p.d.f., P(ρ, ψ; x, t), through,

P̃(ψ; x, t) =
1

〈ρ〉

∫
ρP(ρ, ψ; x, t) dρ, (5.13)

where the independent variables ρ and ψ in the p.d.f.s denote the sampling variables
in this context, not the LES fields. Moreover, we remark that, strictly speaking, P and
P̃ represent the p.d.f.s of resolved field quantities when obtained from the LES. They
do not denote the p.d.f.s of the total fields, which would include the information of
the unresolved scales in the LES. We defer the question of the effect of the unresolved
scales on the p.d.f. to § 7.3.

The Favre p.d.f.s, P̃(ψ), as a function of time are shown in figure 15 for the
three planes in the mixing zone previously specified. These p.d.f.s were formed by
constructing the histograms of resolved mixture fraction, ψ̃ , from the LES at planes
of constant x. These results have been obtained at times that correspond, roughly,
to instants just before reshock, just after reshock, just past the peak of kinetic
energy deposition by the rarefaction-wave interaction and the end of the simulation,
respectively. In the initial phase before reshock (figure 15a), little mixing has taken
place. This is evident from the fact that the planar P̃(ψ) are very intermittent and most
of the fluid is composed of unmixed gases. The two large peaks at the extreme values
of mixture fraction, 0 and 1, are evidence of this state of the gas. This is the phase
where the inviscid linear and nonlinear instability mechanisms of RMI dominate;
physical and subgrid diffusion have not had sufficient time to act. Almost immediately
after reshock (figure 15b), very fast mixing caused by the vorticity deposited in the
mixing zone by the shock leads to a P̃(ψ) with a strong central mode for the plane
at xc. The structure of P̃(ψ) at the other two planes close to the pure gases have
also changed. The two intermittent peaks at the extreme values of mixture fraction
have moved towards the centre of the figure and are now less pronounced. Some
adjacent broadening of P̃(ψ) including the appearance of plateau is also observed.
Before the interaction with the rarefaction wave becomes visible (figure 15c), P̃(ψ) at
the plane in the centre and that close to the SF6 side become even more unimodal,
with peaks that are well correlated with the average value of mixture fraction at that
plane. The p.d.f. at the remaining plane, air side, still preserves a strong degree of
intermittency with large amounts of unmixed air. Long after the interaction with the
rarefaction wave and the subsequent development of the energy cascade (figure 15d),
the most salient features of P̃(ψ) have not changed. We do observe that the width,
or variance, of P̃(ψ) has narrowed somewhat; indicating further mixing progress. A
salient feature of the curves for the central plane and that close to the SF6 side is that
the enhanced mixing is non-uniform, or rather forced. We observe the development
of two small peaks diametrically opposed to the location where we had seen a single
peak. Our observation is that the rarefaction wave deposits more energy on those
physical regions of the domain where the density gradient is largest. While P̃(ψ) itself
is a single-point quantity and thus deprived of scale information, it is reasonable
to speculate that the largest density gradients will exist in the region between the
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Figure 15. Probability density function P̃(ψ) of the mixture fraction at different times
calculated from the resolved scales only, across three planes of the mixing zone: xc − 0.25δMZ

(dotted line), xc (continuous line) and xc + 0.25δMZ (dashed line). (a) t = 3 ms, (b) 3.6ms,
(c) 7ms, (d) 10 ms.

unmixed gasses and the relatively well-mixed core of the TMZ. Then, more vigorous
mixing should take place in what appears to be the tails of P̃(ψ). This bimodal
character of the central P̃(ψ) persists as the bubbles and spikes continue to transport
partially mixed gases from the outer regions of the mixing zone. We do expect that
as time advances further, the bimodal character of P̃(ψ) should evolve into a single
mode since the remaining rarefaction waves emanating from the wall are very weak.

6. Subgrid continuation
The structural nature of the stretched-vortex subgrid model can be used to develop

a multiscale treatment of the subgrid activity. This is done in a way which is fully con-
sistent with its implementation when determining the subgrid fluxes in LES. Velocity
spectra, including the anisotropic components, can be estimated directly for scales
below the cutoff scale from the formulae previously presented. Subgrid continuation of
the scalar spectra requires one additional assumption to estimate the effect of Schmidt
number, and subgrid mixing statistics require further assumptions of the form of the
subgrid p.d.f. Here we outline the mechanics for calculating these continuations in the
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context of the velocity spectra. In the subsequent sections, the additional modelling
assumptions required for the scalar are discussed and we present results.

The two-dimensional velocity spectra may be calculated in terms of kr , the radial
component of wavenumber vector k = (k1, k2, k3) in polar coordinates. This is a lengthy
calculation which closely follows the detailed derivation of the one-dimensional
spectra given by Pullin & Saffman (1994). For that reason, only the main results are
outlined here. We begin with the two-point velocity and vorticity correlation tensors

Rij (r) = 〈〈ui(x)uj (x + r)〉〉, (6.1a)

Wij (r) = 〈〈ωi(x)ωj (x + r)〉〉, (6.1b)

where 〈〈·〉〉 denote ensemble averaging and we omit the tilde notation of the velocity
vector since we are dealing with the complete velocity vector. The corresponding
Fourier transforms are given by

Rij (r) =

∫ ∫ ∫
Φij (k) exp(ik · r) dk1 dk2 dk3, (6.2a)

Wij (r) =

∫ ∫ ∫
Ωij (k) exp(ik · r) dk1 dk2 dk3. (6.2b)

Pullin & Saffman (1994) have shown that without assumptions of isotropy, the
vorticity correlation tensor may also be expressed as

Wij (r) =
1

2V
∑

m

lm

∫ ∞

−∞

∫ ∞

−∞

∫ π

0

∫ 2π

0

∫ 2π

0

|ω̂m(κ1, κ2, t)|2

× exp(−iκ1r
′
1 − iκ2r

′
2)U3iU3j P(α′, β ′, γ ′) dκ1 dκ2 sin α′ dα′ dβ ′ dγ ′, (6.3)

where the sum is over an ensemble of vortices, length lm, whose orientations with
respect to the laboratory frame of volume V are described by the p.d.f., P, and the
Euler angles α′, β ′, γ ′. The matrix Uij is a unitary rotation operator that maps vortex,
r ′
j , and laboratory coordinates, and ω̂m(κ1, κ2) is the Fourier transform of the vorticity

expressed in the frame of the vortex.
An expression for the two-dimensional energy spectrum may be arrived at by first

defining the two-dimensional energy tensor as

E2D
ij (kr ) =

kr

2

∫ ∞

0

∫ 2π

0

Φij dθ dk3, (6.4)

where k1 = kr cos θ , k2 = kr sin θ and k2
r + k2

3 = |k|2. From the relationship between the
transform of the velocity and vorticity correlations Φij and Ωij , we obtain

Ωij (k) = Φqq(k)(|k|2δij − kikj ) − |k|2Φji, (6.5)

which allows the two-dimensional velocity spectrum to be expressed in terms of the
vorticity correlation transform

E2D
ij (kr ) =

kr

2

∫ ∞

0

∫ 2π

0

1

|k|2

(
Ωqq(k)

(
δij − kikj

|k|2

)
− Ωji(k)

)
dθ dk3. (6.6)

Using the inverse Fourier transform of (6.2) and the alternative expression for Wij ,
(6.3), in (6.6), the two-dimensional energy tensor E2D

ij leads, by integration of resulting
delta functions, to
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E2D
ij (kr )

=
kr

V
∑

m

lm

∫ 2π

0

∫ π

0

∫ |kr /cos α′ |

kr

∫ 2π

0

|ω|2
κ

(δij − kikjκ
−2 − U3iU3j )P(α′, β ′)(

κ2 − k2
r

)1/2(
k2

r − κ2 cos2 α′
)1/2

dα′ dβ ′ dκ,

(6.7)

where κ2 is found to be equivalent to k2, and P has been assumed to be independent
of the spin angle γ ′. The two-dimensionally shell-summed energy spectrum Eii can
now be related to the three-dimensionally shell-summed energy spectrum by using the
sum identity U3iU3i = 1 and the result (Lundgren 1982) that the shell-summed energy
spectrum is related to the transform of the vorticity for an ensemble of vortices by

E(κ) =
2π2

V
∑

m

lm

∫ 2π

0

1

κ
|ω̂m(κ1, κ2, t)|2 dθ, (6.8)

to arrive at

E2D
qq (kr ) =

kr

2π2

∫ 2π

0

∫ π

0

∫ |kr / cosα′ |

kr

E(κ)P(α′, β ′) sin α′(
κ2 − k2

r

)1/2(
k2

r − κ2 cos2 α′
)1/2

dα′ dβ ′ dκ. (6.9)

For the simple vortex alignment model used in the stretched vortex model, the p.d.f.
has the form

P(α′, β ′) =
4π

sin αo

δ(α′ − αo)δ(β
′ − βo), (6.10)

which results in

E2D
qq (kr ) =

2kr

π

∫ |kr / cosαo |

kr

E(κ)(
κ2 − k2

r

)1/2(
k2

r − κ2 cos2 αo

)1/2
dκ. (6.11)

The component of the shell-summed energy spectra that results from the out-of-plane
direction E2D

33 may be calculated directly by using the relation k2
3 = k2 − k2

r and the
fact that U33 = cosα′, giving

E2D
33 (kr ) =

2kr

π

∫ |kr / cosαo |

kr

(
k2

r − κ2 cos2 αo

)1/2
E(κ)

κ2
(
κ2 − k2

r

)1/2
dκ. (6.12)

At an instant in time, the velocity spectra for the resolved fields may be calculated as
radial autocorrelations in a given plane of constant x, exploiting the periodic boundary
conditions of the flow. The subgrid continuation of the velocity spectra is obtained
by averaging the two-dimensional subgrid spectra over all the cells of the plane
and the two-dimensional velocity spectra is in turn related to the known three-
dimensional spectra (3.12) for a given vortex by (6.11). The spectra of the velocity
component normal to the plane (the u-velocity) is given by (6.12). In turn, this implies
that the remaining two velocity components v, w, whose directions lie in the plane,
contribute E2D

v +E2D
w = E2D −E2D

u . Such spectral continuations allow the presentation
of anisotropic and isotropic portions of the total (resolved + subgrid) velocity spectra,
as will be shown in § 7.1.

7. Subgrid continuation statistics
We use the subgrid continuation ideas to develop consistent estimates of subgrid

spectra for the velocity and scalar fields. In this context, the results show that the
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Figure 16. The radial spectra (solid line) with computed subgrid continuation (broken
line) at time t = 10ms computed in the centreplane of the TMZ. (a) Normalized spectra;
(b) compensated spectra.

resolved spectra can be extended consistently into the subgrid. In the case of a mixing
scalar, the continued spectra can incorporate any effects owing to non-unity Schmidt
number, Sc= ν/D. Then, appropriate integration of the spectra generates estimates
of subgrid scalar moments. In turn, these scalar moments can be used to construct
assumed subgrid p.d.f.s of the mixing field of any reasonable complexity. For example,
the resolved scalar field and second-order moment (variance) can be used to construct
simple subgrid presumed p.d.f.s (Gaussian, beta, etc.). Presumed p.d.f.s with three or
more moments can also be constructed with some additional modelling (Effelsberg &
Peters 1983; Mellado, Sarkar & Pantano 2003).

7.1. Turbulence spectra

In the general practice of LES, it is not possible to obtain estimates of the full
turbulence energy spectra, and consequently there is limited information to judge
whether the resolved cutoff scale of the simulation reaches well within the inertial
subrange (a theoretical premise of LES). Estimates of the complete turbulence spectra
also enable more accurate calculation of the turbulent dissipation and hence, of the
Kolmogorov length scale, η = (ν3/ε)1/4. With this in mind, our subgrid model and
resolved geometry were chosen to allow such estimates to be made. Since the flow
possesses two homogeneous directions, an averaged η for each plane of constant
x can be obtained by using the plane-averaged values of ν. Figure 16(a) shows
the normalized and figure 16(b) the compensated resolved and continued turbulence
spectra in the plane of constant x at the middle of the mixing zone for t = 10 ms. As
expected, the roll-off for the spectra begins near kη = 0.1, consistent with the majority
of the dissipation occurring in the scales kη > 0.1. Note that this estimate is not trivial.
From (3.12), it is seen that the viscous decay of the spectrum of the stretched-spiral
vortex is Gaussian, a natural consequence of the second-order viscous operator in the
Navier–Stokes equations. In contrast, figure 16(b) indicates that the present estimate
of the plane-averaged subgrid energy spectrum decays exponentially when kη =O(1),
in agreement with experimental evidence, Saddoughi & Veeravalli (1994). The change
from local Gaussian (in a cell) to plane-averaged exponential decay is explained by
the influence of the statistics of fluctuating axial strain along the subgrid vortex axis
(the quantity |ã| in (3.12)); for analysis, see Pullin & Saffman (1993).
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As discussed in the previous section, it is now possible to use the stretched-vortex
model to derive estimates of the isotropic and anisotropic parts of the spectra with
the present multiscale approach. Figure 17(a) shows the anisotropic, u component of
velocity E2D

u , and the isotropic radial spectra of velocity components, E2D
v + E2D

w . In
this figure, we show the spectra obtained from the resolved velocity fields (continuous
line) as well as the subgrid continuation part (broken lines) at the same location used
in figure 16. The continued spectra was obtained by computing the two-dimensional
radial spectral, (6.11)–(6.12), for each cell in a plane and then averaging the result
for the entire plane. For comparison, we also show the −5/3 constant slope line
in the same figure. It can be noted that this LES is conducted at a resolution well
within the inertial subrange, since we recover more than a decade of wavenumbers
with a Kolmogorov-like spectra in the resolved field. Figure 17(b) gives a scale-
dependent measure of the anisotropy that the model continues into the subgrid. This
indicates that E2D

u contains, at almost every scale, more than a third of the total
energy. The spectra detailed from the simulation is reported unprocessed, that is, all
wavenumber contributions are shown and no filtering is performed at the highest
wavenumbers. It is our experience that the use of skew-symmetric-type discretization
together with bandwidth-optimized centred stencils, like the present TCD, leads to
very good spectral results with minimal accumulation of energy owing to aliasing
errors at the high-wavenumber end of the spectrum.

7.2. Effect of Schmidt number on continued scalar spectra

We remark from the outset that we will allow the ratio of molecular diffusivity to
scalar diffusivity, known as the Schmidt number, to take a series of values that are
different from the actual ratio corresponding to our gas mixture. This is done in the
spirit of exemplifying the methodology for other gases with different diffusivities and
is carried out in both this subsection and the following one.

Pullin & Lundgren (2001) presented an approximate solution to the equations
describing the mixing of a passive scalar inside a stretched-spiral vortex. They obtained
the scalar spectrum (their equations (99)–(106)), which, for the scalar ψ , we express
in the form

Eψ (k) = Kψ

(
k−5/3exp

(
− (4ν + 2D)k2

3ã

)
+

8

5π

(
2Γ

ã

)1/3

k−1exp

(
−2Dk2

3ã

))
, (7.1)
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Figure 18. The time t = 10ms radial spectra of the scalar computed in the centre plane of
the TMZ with subgrid continuation (broken lines) assuming, from left to right, Sc = 1, 103,
106, and 109.

where ã is the axial resolved-scale strain rate along the subgrid vortex axis, Γ is
the subgrid vortex circulation and Kψ is a group prefactor whose numerical value
depends on physical quantities that describe the internal structure of the vortex and
the initial scalar field. Equation (7.1) is consistent with phenomenological models for
scalar mixing in turbulence (see Tennekes & Lumley 1974). When the scalar diffusivity
D 
 ν, there is a rapid decay like k−5/3 through the inertial convective range, with
slower decay as k−1 before reaching diffusive cutoff at the Batchelor scale, while for
diffusivities D =O(ν) the cutoff occurs before the k−1 range begins. The derivation of
this form is consistent with the subgrid scalar flux (3.3d); the mixture fraction within
a computational cell is imagined to be wound by an elemental Lundgren subgrid
vortex. The group prefactor Kψ is computed here for each cell by dynamic structure
function matching, similar to that outlined in § 3.2 for the subgrid velocity spectrum.
This spherically averaged structure function formed by ψ evaluated from the resolved
scale at the length scale ∆ =�x, F̃ψ

2 (∆), is equated with the subgrid expression of
the same quantity

F̃ψ

2 (∆) = 4Kψ∆2/3

∫ π

0

(
s−5/3 +

8

5π

(
2Γ

ã∆2

)1/3

s−1

)(
1 − sin s

s

)
ds. (7.2)

For our model, the remaining parameter is the subgrid circulation Γ/ν, which, from
(7.1), largely determines the relative weighting between the k−5/3 and the k−1 spectral
components. Pullin & Lundgren (2001) found that Γ/ν = 1000 gave fair agreement
with experimental data at Sc > 1, and we adopt this value here. This is the only
additional assumption required for the subgrid continuation of the scalar spectrum.
It may seem paradoxical that Sc dependence at small scales can be inferred from LES
in which Sc does not appear explicitly. This is because we implicitly assume, in the
LES, that the resolved scale cutoff �c lies somewhere in the inertial range, and that,
consequently, the flux of scalar variance off the resolved-scale grid is independent
of Sc for Sc � 1. This is consistent with the hypothesis that mixing is an essentially
small-scale process that is subgrid in the present LES.

Figure 18 shows continuation of the resolved scale composition spectra into the
subgrid for different Schmidt numbers. As in § 7.1, this was done by computing
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the two-dimensional radial spectral continuation for each cell in a plane and then
averaging the result for the entire plane. As can be seen, the large Sc spectra display
both the k−5/3 and k−1 range. While the tails of the spectra can be quite long for this
higher Schmidt number, its contribution to the subgrid scalar variance is typically
not large, unless the Schmidt number is huge.

The subgrid variance of the composition scalar σ 2
ψ within a given cell may be

computed from the model

σ 2
ψ = 2

∫ ∞

kc

Eψ (k) dk, (7.3)

where kc is the cutoff wavelength associated with the grid spacing and the results from
the structure function matching, which implicitly assumes 2

∫ ∞
0

Eψ dk = V−1
∫

|ψ |2 dx.
By examining the relevant portion of (7.1), it is easy to see that there is only logarithmic
dependence on Schmidt number for the subgrid contribution to the total variance,
that is ∫ ∞

kc

s−1 exp

(
−2Ds2

3ã

)
ds = 1

2

∫ ∞

Dk2
c 2/(3ã)

s−1 exp(−s) ds, (7.4a)

= −γ − log(ξ ) −
∞∑

n=1

(−1)n
ξn

n(n!)
, (7.4b)

where ξ = Dk2
c2/(3ã) and γ = limξ→0+(ln ξ−1 −

∫ ∞
ξ

s−1 exp(−s) ds) ∼ 0.5772 is Euler’s

constant. For fixed ν and large Sc then, it can be seen that the leading behaviour
is log(Sc) − log(2νk2

c /(3ã)) − γ . This result is also consistent with the arguments
presented by Dimotakis (1989) that account for the Schmidt-number dependence of
the total scalar variance.

7.3. Effect of Schmidt number on continued p.d.f.

Actual p.d.f.s (regular or subgrid) are not generally known in LES. They contain
the complete single-point statistics of the state of the mixture. Two approaches are
commonly used in LES to estimate or model the subgrid p.d.f.: solve a subgrid
transport p.d.f. equation (Colucci et al. 1998) or directly presume a functional form
with specified moments (Cook & Riley 1994). Here, we take this latter approach
for simplicity, but the alternative of solving a transported subgrid p.d.f. equation is
also feasible. Using results from previous sections, it is now possible to construct
a presumed subgrid p.d.f. that can take into account possible non-unity Schmidt-
number effects. We consider the subgrid Favre p.d.f. of mixture fraction, P̃sgs(ψ), to
clarify ideas.

There are typically two uses of P̃sgs. In the first case, the physics of the problem
are such that there is two-way coupling between the scalar and the flow and we must
obtain subgrid expectations of some nonlinear function of ψ for LES closure; let us
call this function f (ψ). Then, knowledge of P̃sgs gives, by direct integration,

˜f (ψ; x, t) =

∫
f (ψ)P̃sgs(ψ; x, t) dψ. (7.5)

This is typically the closure of LES for combustion. In the second case, we may be
interested in mixing per se. The question of interest now is whether we can estimate the
total scalar p.d.f., P̃(ψ), (resolved and subgrid) from P̃sgs . To expose the relationship
between these two p.d.f.s, we must recall Gao & O’Brien (1993) and introduce the
fine-grained p.d.f., δ(ψ −ψ∗(x, t)), where δ(x) is Dirac’s delta function, ψ is the sample
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space variable and ψ∗(x, t) is a realization of the random space–time varying field.
We show the derivation of this relationship for the Reynolds and Favre p.d.f.s. The
regular and subgrid p.d.f.s are obtained from the fine-grained p.d.f. through

P(ψ; x, t) = 〈〈δ(ψ − ψ∗(x, t))〉〉, (7.6)

Psgs(ψ; x, t) =

∫
G(x − x ′)δ(ψ − ψ∗(x ′, t)) dx ′, (7.7)

where 〈〈 · 〉〉 denotes ensemble averaging and G(x) is the convolution kernel as in
(3.2). Now, ensemble averaging (7.7), commuting the spatial and ensemble-averaging
operators (both are linear operators), leads to

〈〈Psgs〉〉 =

〈〈 ∫
G(x − x ′)δ(ψ − ψ∗(x ′, t)) dx ′

〉〉
=

∫
G(x − x ′)P(ψ; x ′, t) dx ′. (7.8)

We further observe that: by construction, G only affects the scales in the
neighbourhood and below the subgrid cutoff scale ∆c and that the spatial variations
of P happen, in general, on scales of the order of the integral scale �. Then, we
can take the p.d.f. outside the integral (using the normalization property of the filter
kernel) giving ∫

G(x − x′)P(ψ; x ′, t) dx ′ ≈ P(ψ; x, t). (7.9)

The approximation in (7.9) is quite accurate because the error, that is at most of
order ∆c/�, is small in LES.

The equivalent of (7.8) for the Favre version of the p.d.f. is

〈〈ρP̃sgs〉〉 =

∫
G(x − x ′)〈〈ρ∗(x ′, t)δ(ψ − ψ∗(x ′, t))〉〉 dx ′

=

∫
G(x − x ′)

{ ∫
ρ〈〈δ(ρ − ρ∗(x ′, t))δ(ψ − ψ∗(x ′, t))〉〉 dρ

}
dx ′

=

∫
G(x − x ′)

{ ∫
ρP (ρ, ψ; x ′, t)dρ

}
dx ′

=

∫
G(x − x ′)〈〈ρ(x ′, t)〉〉P̃(ψ; x ′, t) dx ′. (7.10)

In the last term, we have removed the superscript from the ensemble average of ρ,
since there is no longer any ambiguity with the sample variable. Using the approxima-
tion introduced in (7.9) and neglecting the additional variable density contributions
resulting from filtering the product of the ensemble-averaged density with the Favre
p.d.f., we arrive at∫

G(x − x ′)〈〈ρ(x ′, t)〉〉P̃(ψ; x ′, t) dx ′ ≈ 〈〈ρ(x, t)〉〉P̃(ψ; x, t). (7.11)

To clarify ideas, we now introduce a concrete function P̃sgs. Among the possible
choices of presumed p.d.f.s, the beta distribution is very popular (Cook & Riley 1994).
For this model, P̃sgs(ψ) within a given cell is assumed to take the form

P̃sgs(ψ; x, t) =
Γ (a + b)

Γ (a)Γ (b)
ψa−1(1 − ψ)b−1, (7.12)
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Figure 19. Effect of Schmidt number on continued p.d.f. of mixture fraction calculated in the
centre of the mixing zone at t = 10 ms with resolved scale p.d.f (solid line) and values Sc = 1,
107 (dash-dot and broken line, respectively).

where Γ (x) is the gamma function. The parameters a and b are determined by
evaluating the first- and second-order moments of P̃sgs, leading to the following
relationships with the resolved scales: a = ψ̃[ψ̃(1 − ψ̃)/σ 2

ψ − 1] and b = a(1/ψ̃ − 1).
Recall, the LES gives ψ̃ directly, and the scalar variance can be estimated from
(7.3). For clarity, we avoided denoting the dependence of a and b on space and time
explicitly, but note that P̃sgs varies with position and time parametrically through the
dependence of a and b on the resolved scalar and scalar variance fields.

The formal method for computing the estimate for P̃ in the mixing zone consist
in noticing that (7.12) is in reality the subgrid conditional-p.d.f. P̃sgs(ψ |ψ̃, σ 2

ψ ). Using
Bayes theorem, the subgrid joint-p.d.f. is now given by

P̃sgs

(
ψ, ψ̃, σ 2

ψ ; x, t
)

= P̃sgs

(
ψ |ψ̃, σ 2

ψ

)
P̃sgs

(
ψ̃, σ 2

ψ ; x, t
)
, (7.13)

and the subgrid p.d.f. of ψ is given by

P̃sgs(ψ; x, t) =

∫ ∫
P̃sgs

(
ψ |ψ̃, σ 2

ψ

)
P̃sgs

(
ψ̃, σ 2

ψ ; x, t
)
dψ̃ dσ 2

ψ. (7.14)

Then, P̃ results from the integration and ensemble averaging given by (7.11), that for
our flow is expressed as the planar-averaged expression

P̃(ψ; x, t) � 〈ρP̃sgs(ψ; x, t)〉
〈ρ(x, t)〉 , (7.15)

where 〈〈ρ(x, t)〉〉 has been approximated by 〈ρ(x, t)〉. In practice, these steps are perfor-
med simultaneously by computing the average of the conditional-p.d.f., P̃sgs(ψ |ψ̃, σ 2

ψ ),
across the cells of the plane in question, as shown by Jiménez et al. (1997) for the
constant density case.

Figure 19 shows the effect of a range of Schmidt numbers on the estimate of the
total p.d.f. taken in the centre of the mixing zone at one time. It can be seen that
as the Schmidt number increases, the logarithmic dependence of the variance on the
Schmidt number results in relatively small, but still visible, changes in the overall
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p.d.f. This is because the subgrid cutoff scale is well within the inertial subrange in
our simulation so that the contribution of the subgrid scalar variance is small with
respect to the resolved counterpart. Note also that the effect of Schmidt number is
not monotone. Some regions of the p.d.f. are lifted with increasing Schmidt number
while others sink; but, in general, the qualitative shape of the p.d.f. is not altered by
the inclusion of subgrid effects.

In § 5.4, we postponed the discussion of the effect of the subgrid scales on the
p.d.f. of mixture fraction and contented ourselves with the statistics obtained from
the resolved scales. At this point, we can now consider the consequences of neglecting
the effect of the unresolved scales within the context of the results of our modelling.
Evidently, most of the scalar variance is already represented by the resolved field
and only a small amount, that could become non-negligible if the Schmidt number
is huge, is present in the subgrid. We can now go back to figure 15 and claim with
a degree of certainty that those p.d.f.s are representative of the state of the mixture.
Nevertheless, we would like to remark that this statement is based on an estimate
of the effect of the subgrid scales on the p.d.f. using additional modelling, the actual
p.d.f. is lost when LES modelling is introduced.

8. Conclusions
The Richtmyer–Meshkov instability with reshock was studied in the canonical

geometry of a rectangular shock-tube with a square cross-section, the gases in the
simulation and the geometry of the domain, and the strength of the incident shock
were chosen to match those of the experiments of Vetter & Sturtevant (1995). The
high Reynolds numbers produced within the mixing zone between gases required the
use of the techniques of large-eddy simulation (LES), and the stretched-vortex subgrid
model was employed. A specially constructed hybrid numerical method was used, one
that is conservative and shock capturing, but reverts to a numerically dissipationless
form away from shocks. Of the three different experiments simulated, all had good
agreement with the observed growth rates of the mixing zone after the initial shock
and after reshock. The actual width of the mixing zone was not expected to compare
well with the observed values owing to the large degree in uncertainty in the initial
conditions, but it was found that the width at the end of the simulation times were
between 4% and 10 % of the observed values.

Examination of the turbulent kinetic energy indicated that an expansion wave which
follows reshock plays a major role, comparable to that of the reshock, in driving the
growth of the mixing layer. In general, the flow in the mixing zone is only weakly
compressible, but the energy spectrum indicates that an inertial subrange does not fully
develop until after the passage of this expansion wave. During this turbulent decay
period, the subgrid dissipation resulting from the stretched vortex model allowed for
the calculation of a Reynold number and a related outer length scale. Furthermore,
the Kolmogorov scale and the subgrid continued spectra were calculated for this
flow. Additional modelling gave insight into the dependence of the mixing of the
constituent gases on the Schmidt number. This dependence was shown to be only
logarithmic, but still had a measurable effect.
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